
5/21/07 1

9. Queued Transaction

Processing
CSEP 545 Transaction Processing

Philip A. Bernstein

Copyright ©2007 Philip A. Bernstein

5/21/07 2

Outline

1. Introduction

2. Transactional Semantics

3. Queue Manager

4. Message-Oriented Middleware

Appendices

A. Marshaling

B. Microsoft Message Queue

5/21/07 3

9.1 Introduction

• Direct TP - a client sends a request to a server, waits

(synchronously) for the server to run the transaction

and possibly return a reply (e.g., RPC)

• Problems with Direct TP

– Server or client-server communications is down

when the client wants to send the request

– Client or client-server communications is down

when the server wants to send the reply

– If the server fails, how does the client find out what

happened to its outstanding requests?

– Load balancing across many servers

– Priority-based scheduling of busy servers

5/21/07 4

Persistent Queuing
• Queuing - controlling work requests by moving

them through persistent transactional queues

• Benefits of queuing

– client can send a request to an unavailable server

– server can send a reply to an unavailable client

– since the queue is persistent, a client can (in principle)

find out the state of a request

– can dequeue requests based on priority

– can have many servers feed off a single queue

Client Server
Enqueue Dequeue

5/21/07 5

Other Benefits

• Queue manager as a protocol gateway

– need to support multiple protocols in just one system

environment

– can be a trusted client of other systems to bridge security

barriers

• Explicit traffic control, without message loss

• Safe place to do message translation between

application formats

5/21/07 6

9.2 Transaction Semantics Server View

• The queue is a transactional resource manager

• Server dequeues request within a transaction

• If the transaction aborts, the dequeue is undone,

so the request is returned to the queue

Start

Dequeue(Req, Q1)

process request Req

Enqueue(Reply, Q2)

Commit

Client

Server’s request queue

Client’s

reply queue

Server ProgramQ1

Q2

5/21/07 7

Transaction Semantics

Server View (cont’d)

• Server program is usually a workflow controller

• It functions as a dispatcher to

– get a request,

– call the appropriate transaction server, and

– return the reply to the client.

• Abort-count limit and error queue to deal with

requests that repeatedly lead to an aborted

transaction

5/21/07 8

• Client runs one transaction to enqueue a request and

a second transaction to dequeue the reply

Transaction Semantics - Client View

Txn1: Start

get input

construct request

Enqueue(Request, Q1)

Commit

Txn3: Start

Dequeue(Reply, Q2)

decode reply

process output

Commit

Q1

Q2

Txn2: Start

Dequeue(Req, Q1)

process request Req

Enqueue(Reply, Q2)

Commit

5/21/07 9

Transaction Semantics

Client View (cont’d)

• Client transactions are very light weight

• Still, every request now requires 3 transactions,

two on the client and one on the server

– Moreover, if the queue manager is an independent

resource manager (rather than being part of the

database system), then Transaction 2 requires

two phase commit

• So queuing’s benefits come at a cost

5/21/07 10

Client Recovery
• If a client times out waiting for a reply, it can

determine the state of the request from the queues

– request is in Q1, reply is in Q2, or request is executing

• Assume each request has a globally unique ID

• If client fails and then recovers, a request could be

in one of 4 states:

– A. Txn1 didn’t commit – no message in either queue.

– B. Txn1 committed but server’s Txn2 did not –

request is either in request queue or being processed

– C. Txn2 committed but Txn3 did not – reply is in the

reply queue

– D. Txn3 committed – no message in either queue

5/21/07 11

Client Recovery (2)
• So, if the client knows the request id R, it can

determine state C and maybe state B.

• What if no queued message has the id R?

Could be in state A, B, or D.

• Can further clarify matters if the client has a local

database that can run 2-phase commit with the

queue manager

– Use the local database to store the state of the request

5/21/07 12

Transaction Semantics - Client View

Txn1: Start

R = LastRequest

Enqueue(Request Q, R)

LastEnqueuedID=R.ID

Commit

Txn3: Start

R = Dequeue(Reply Q)

decode reply & process output

LastDequeuedID=R.ID

Commit

Q1

Q2

Txn2: Start

Req=Dequeue(RequestQ)

process request Req

Enqueue(ReplyQ, reply)

Commit

Txn0: Start

get input & construct request R

LastRequest = R

Commit

5/21/07 13

Client Recovery (3)
• If client fails and then recovers, a request R could

be in one of 4 states:

– A. Txn1 didn’t commit – Local DB says R is

NotSubmitted.

– B. Txn1 committed but server’s Txn2 did not – Local

DB says R is Submitted and R is either in request queue

or being processed

– C. Txn2 committed but Txn3 did not – Local DB says R

is Submitted and R’s reply is in the reply queue

– D. Txn3 committed – Local DB says R is Done

• To distinguish B and C, client first checks request

queue (if desired) and then polls reply queue.

5/21/07 14

Persistent Sessions
• Suppose client doesn’t have a local database that

runs 2PC with the queue manager.

• The queue manager can help by persistently

remembering each client’s last operation, which is

returned when the client connects to a queue …

amounts to a persistent session

5/21/07 15

Client Recovery with Persistent Sessions

// Let R be id of client’s last request

// Assume client ran Txn0 for R before Txn1

Client connects to request and reply queues;

If (id of last request enqueued  R) { resubmit request }

elseif (id of last reply message dequeued  R)

{ dequeue (and wait for) reply with id R }

else // R was fully processed, nothing to recover

• Now client can figure out

• A – if last enqueued request is not R

• D – if last dequeued reply is R

• B – no evidence of R and not in states A, C, or D.

5/21/07 16

Non-Undoable Operations

• How to handle non-undoable non-idempotent

operations in txn3 ?

Txn3: Start

Dequeue(Reply for R, Q2)

decode reply & process output

State(R) = “Done”

Commit

Crash!

=> R was processed.

But Txn3 aborts.

So R is back on Q2.

• If the operation is undoable, then undo it.

• If it’s idempotent, it’s safe to repeat it.

• If it’s neither, it had better be testable.

5/21/07 17

Testable Operations

• Testable operations

– After the operation runs, there is a test operation that

the client can execute to tell whether the operation ran

– Typically, the non-undoable operation returns a

description of the state of the device (before-state) and

then changes the state of the device

– The test operation returns a description of the state of

the device.

– E.g., State description can be a unique

ticket/check/form number under the print head

5/21/07 18

Recovery Procedure for State C

To process a reply

1. Start a transaction

2. Dequeue the reply

3. If there’s an earlier logged device state for this

reply and it differs from the current device state,

then ask the operator whether to abort this txn

4. Persistently log the current device state with

the reply’s ID. This operation is permanent

whether or not this transaction commits.

5. Perform the operation on the physical device

6. Commit

Log

5/21/07 19

Optimizations

• In effect, the previous procedure makes the action

“process output” idempotent.

• If “process output” sent a message, it may not be

testable, so make sure it’s idempotent!

– if txn3 is sending a receipt, label it by the serial number of

the request, so it can be sent twice

• Log device state as part of Dequeue operation

(saves an I/O)

– i.e., run step 3 before step 2

5/21/07 20

9.3 Queue Manager

• A queue supports most file-oriented operations

– create and destroy queue database

– create and destroy queue

– show and modify queue’s attributes (e.g. security)

– open-scan and get-next-element

– enqueue and dequeue

• next element or element identified by index

• inside or outside a transaction

– read element

5/21/07 21

Queue Manager (cont’d)

• Also has some communication types of operations

– start and stop queue

– volatile queues (lost in a system failure)

– persistent sessions (explained earlier)

• System management operations

– monitor load

– report on failures and recoveries

5/21/07 22

Example of Enqueue Parameters

(IBM Websphere MQ)

• System-generated and application-assigned message Ids

• Name of destination queue and reply queue (optional)

• Flag indicating if message is persistent

• Message type - datagram, request, reply, report

• Message priority

• Correlation id to link reply to request

• Expiry time

• Application-defined format type and code page (for I18N)

• Report options - confirm on arrival (when enqueued)?,

on delivery (when dequeued)?, on expiry?, on exception?

5/21/07 23

Priority Ordering

• Prioritize queue elements

• Dequeue by priority

• Abort makes strict priority-ordered dequeue too

expensive

– could never have two elements of different priorities

dequeued and uncommitted concurrently

• But some systems require it for legal reasons

– stock trades must be processed in timestamp order

5/21/07 24

Routing
• Forwarding of messages between queues

– transactional, to avoid lost messages

– batch forwarding of messages, for better throughput

– can be implemented as an ordinary transaction server

• Often, a lightweight client implementation supports

a client queue,

– captures messages when client is disconnected, and

– forwards them when communication to queue server is

re-established

• Implies system mgmt requirement to display

topology of forwarding links

5/21/07 25

State of the Art
• All app servers support some form of queuing

• A new trend is to add queuing to the SQL DBMS

– Oracle & SQL Server have it. Avoids 2PC for Txn2,
allows queries, ….

• Queuing is hard to build well. It’s a product or
major sub-system, not just a feature.

• Lots of queuing products with small market share.

• Some major ones are

– IBM’s MQSeries

– Oracle Streams AQ

– BEA Systems MessageQ

– Microsoft Message Queuing

9.4 Message-Oriented Middleware

• Publish-Subscribe

• Message Broker

• Message Bus

5/21/07 26

Publish-Subscribe
• Using queues, each message has one recipient

• Some apps need to send to multiple recipients

– E.g., notify changes of stock price, flight schedule

• Publish-subscribe paradigm allows many

recipients per message

– Subscribers sign up for message types, by name (e.g.

“Reuters”) or predicate (type=“Msft” and price > 33).

• Similar to queues

– Send and receiver are decoupled

– Send or receive within a transaction

– Subscribers can push (dispatch) or pull (dequeue)
5/21/07 27

Publish-Subscribe (cont’d)

• Hence, often supported by queue managers

• E.g., Java Messaging Service (JMS) defines

both peer-to-peer and pub-sub interfaces

5/21/07 28

Data Streams

• Treat a message stream like a table in a SQL

database

• A query retrieves messages within a time window

• An evolution of pub-sub and of SQL databases

• Applications – sensors, financial markets, …

• Today, products are from startups but expect to

see it in volume products

5/21/07 29

Broker and Bus Middleware

• Messaging technology is often used to integrate

independent applications.

– Broker-based: Enterprise Application Integration

(EAI)

– Bus-based: Enterprise Server Bus (ESB)

• These functions are often combined with queuing

and/or pub-sub.

5/21/07 30

Broker-Based

5/21/07 31

Client
Uniform

Function

Interface

Protocol

AdaptorParameter

Translation

Message Broker

Protocol

Adaptor

     

TP System

TP Application

TP System

TP Application

• The Broker bridges wire protocols, invocation

mechanisms, and parameter formats

Bus-Based

5/21/07 32

Client

TP System

TP Application

Protocol Adaptor

  
TP System

TP Application

Protocol Adaptor

• All apps support the same protocol and invocation

mechanism

• Client or broker functions still needed for

translating parameter formats

Trends

• There is much variety in message-oriented

middleware

• Probably this will continue, followed by

some shakeout

5/21/07 33

5/21/07 34

Appendix A: Marshaling
• Caller of Enqueue and Dequeue needs to marshal and

unmarshal data into variables

• Instead, use the automatic marshaling of RPC

• Here’s how RPC works:

App Proxy Runtime Runtime Stub App

call P

return

to caller

pack

argu-

ments

unpack

results

send

receive

receive

send

unpack

argu-

ments

pack

results

P

work

return

wait

Client’s System Server’s System

Call

packet

Return

packet

5/21/07 35

Adapting RPC Marshaling for Queues

App Proxy Runtime Runtime Stub App

call P

return
to app

pack
argu-
ments

unpack
results

enqueue
request

dequeue
reply

dequeue

request

enqueue

reply

unpack
argu-

ments

pack
results

P

work

return

wait

Client’s System Server’s Systemserver
request
queue

client
reply

queue

• In effect, use queuing as a transport for RPC

• Example – Queued Component in MSMQ

5/21/07 36

Appendix B : Microsoft Message Queuing

(MSMQ) [from 2003]
• Clients enqueue/dequeue to queue servers

– API - Open/Close, Send/Receive

– Each queue is named in the Active Directory

– Additional functions: Create/Delete queue, Locate queue, Set/Get
queue properties, Set/Get queue security

• Send/Receive can be
– Transactional on persistent queues (transparently gets transaction

context), using DTC

– Non-transactional on persistent/volatile queues

• Independent client has a local persistent queue store.
– Processes ops locally, asynchronously sends to a server

– Dependent client issues RPC to a queue server
(easier to administer, fewer resources required)

5/21/07 37

MSMQ Servers

Open Send Rec’v Close

API

Application

1

Application

2

Information

Server

Client Proxy

Server

Queue

Manager

‘A’ ‘B’ ‘C’ Sys Sys

Routing

Server

MSMQ Server

• Stores messages

• Dynamic min-cost routing

• Volatile or persistent (txnal)

store and forward

• Support local / dependent

clients and forwarding from

servers / independent clients

• Provides MSMQ Explorer

– Topologies, routing, mgmt

• Security via ACLs, journals,

public key authentication

5/21/07 38

MSMQ Interoperation

• Exchange Connector - Send and receive messages

and forms through Exchange Server and MSMQ

• MAPI transport - Send and receive messages and

forms through MAPI and MSMQ

• Via Level 8 Systems,

– Clients - MVS, AS/400, VMS, HP-Unix, Sun-Solaris,

AIX, OS/2 clients

– Interoperates with IBM MQSeries

